center

Energy saving

concepts in construction

center

Solar Info Center – Freiburg, Germany

Solar Info Center, Freiburg

solar **info**

center

- The service center for all aspects of sustainable building and habitation: energy efficiency, renewables and ecological building materials
- 15.000 m² for research, development, application, design, consulting and education
- 45 companies and institutes with more than 350 employees
- The platform for a growing branch
- Innovative solutions at conventional costs
- Owner: Oppenheim Immobilien-Kapitalanlagegesellschaft mbH
 Provinzial Rheinland Lebensversicherungs AG, Düsseldorf

What customers find...

solar **info**

center

technical competence

planning, consulting, project developing, product engineering

education & training

exhibitions, public relations

e Lounge & Solar Casino

Infotage

violin concert

Innovation and established concepts

- The building concept of the Solar Info Center combines mature technologies with the state of the art
- The applied concept reflects actual economic solutions but in some parts of the building, research and development of new technologies never stops

Research and Development in the Solar Info Center

- Not far away, we get to the Fraunhofer SOBIC. This demonstration center is part of the Fraunhofer Gesellschaft and it works in the field of construction techniques for industrial and office buildings.
- The SOBIC exhibits examples for summerly heat protection, jalousies, adaptable glazing, solar claddings

Courtyard

- On sunny days you can sit in the courtyard
- You can see the Photovoltaic elements from this place. The main part of the photovoltaic installation is on the roofdeck

SIC International

International Networking

solar **info**

center

- · technology centers network net-e
- Exchange and collaboration for expertise in renewable energies

center

EnEd – International Education Center for Energy Solutions

0	consulting		
		- institutions	
0	plattform for education	- governments / administrations	
		- companies - human ressource management	
0	education for facility ma	na ₫⊜nhenic al seminars	
		- vodatilodiagtæridinegslestate managers	
0	international education	acatteacher takieringmaintenance technicians	
		- for emerging an transitional countries	
•	university education	- knowateansfermetionatorgenementous	
	-	- EDEPERATIONS WITH TO NITE TO STAND	
		- testaneralisare ingeneralisare raitentects	
		- all courses include business- and financial	
		components	www.ened.com

center

EnEd – International Education Center for Energy Solutions

- Seminars in Singapore and Indonesia
 - ➤ Wind Energy
 - ➤ Energy Efficiency
 - ➤ Solar Cooling
 - ➤ Biomass Cogeneration

EnEd – International Education Center for Energy Solutions

solar **info**

center

Workshop in Freiburg
 for technical engineers from Gambia > Photovoltaic – stand alone systems

EnEd – International Education Center for Energy Solutions

solar **info**

center

- Seminar in Santiago
 Universidad de Chile
 - ➤ Wind Energy
 - ➤ Biomass
 - > Solarthermal
 - ➤ Energy Efficiency

EnEd – International Education Center for Energy Solutions

solar **info**

center

Seminar for architects in Seoul, South Korea,

Hanyang University

environmental – friendly and sustainable construction

End Energy Consumption Worldwide

Definition:

End Energy

Energy input to the heating, cooling or hot water system to satisfy the energy need for heating, cooling or hot water.

Quelle: Arbeitsgemeinschaft Energiebilanzen

Global energy demand

center

center

Regional Indicators* (CO2/Population [† CO2/capita])

International Energy Agency, WEO 2004

www.ened.com

Capital Costs af Renewable Energy Technologies Electric Power per kW

International Energy Agency, WEO 2004

www.ened.com

center

Solar Energy

- Low-grade thermal energy for heating our homes and businesses
- Medium-grade thermal energy for running some industrial processes
- High-grade thermal energy for driving turbines to generate electricity
- Electrical energy, converted directly from sunlight, to provide electricity for all of its myriad applications and even
- Thermal energy in hydrogen (via water splitting using photovoltaic of thermo-chemical processes to split water), for use in fuel cells and a broad range of electrical, heating, and transportation applications

Energy Efficiency

solar **info**

Primary Energy, End Energy, Used Energy

center

Source: Fraunhofer ISE

www.ened.com

center

Solarthermal - water heating systems

- simple systems
- optimized design instead of high technologies

requirements:

- low costs
- save use
- low energy
- low noise
- comfort

Proposal solar info center:

solar **info**

www.ened.com

center

Solarthermal Power Plant

Juragua, Cuba

Proposal SIC:

Solarthermal Power Plant Juragua, Cuba

center

Fotovoltaik – stand alone systems

center

PV in architecture: Bremgarten, publishing company

center

PV in architecture: Freiburg, Badenova - Stadium

quelle: badenova

center

PV in architecture: Freiburg, Heliotrop

quelle: Nemec

center

PV in architecture: Denzlingen, community center

center

PV in architecture: Freiburg, New Trade Fair

center

PV in architecture: Freiburg Vauban, Solar Garage

center

PV in architecture: Freiburg, Fischer-Production

center

PV in architecture: Freiburg, catholic rooming house

center

PV in architecture: Freiburg, Main Station, Tower

quelle: Fraunhofer ISE | harter + kanzler

center

PV in architecture: Freiburg, Solar-Fabrik AG

center

PV in architecture: Freiburg, Christaweg

PV in architecture: Freiburg, Fraunhofer ISE

quelle: Fraunhofer ISE

center

PV in architecture: Freiburg, Fraunhofer ISE

quelle: Fraunhofer ISE

center

PV in architecture: Freiburg, Fraunhofer ISE

quelle: Fraunhofer ISE

center

Possibility for lowering the causes of Emissionen from CO2

Saving Energy

Reduction of Energy demand Rational energy use Substitution of CO₂ - highly by CO₂ reduced sources of energy

Intensified use of renewable energies

Intensified use of natural gas

lowering the energy associate with the emissions of CO2

Low Energy Non-Residential Buildings

solar **info**

center

Request

Integral Design and Simulation

- minimized heat loss
- minimized cooling loads
- heating and cooling with environmental energy
- effective sun protection
- optimal use of daylight

optimal quality

Day light and Shading

- Active simulation during planning
- bright office space through intelligent planning
- No overheating in summer because ofsystematic shading systems
- The adjustment control of the blinds reacts on temperature as well as individually for each office unit

solar **info**

center

Automatic Ventilation

- Exhaust air ventilation in combination with air intakes in the walls assure constant fresh air
- Cooling in summer through night air cooling
- The massive walls store the cool temperatures from night into the day
- No suspended ceilings

Reduction of Emissions

- There is a pipeline running through the site coming from the district heating system network at the university hospital.
- We use the pipeline and receive the heat from a newly installed heat recovery system at this district heating system
- The production of the thermal heat is emission-free by 100%.

www.ened.com

Solar Info Center - building

solar info

Contracting

- The Solar Info Center finances part of the newly installed heat recovery system by contracting
- The heat recovery system delivers more energy than the Solar Info Center needs
- No additional cost for user and investor compared to conventional system because of the reduced energy consumption of the building.

Result of the monitoring of the first 3 years:

The heat recovery produces double the heat consumption of the Solar Info Center

Heat Recovery certified planning figures

Heat Recovery monitored results 2005 - 2007

Overview Energy Concept

useful floor area	14.500 m ²
gross volume	58.000 m ³
external surface	0,25
heating energy demand	23,4 kWh/m²a
energy requirement	
without working tools	24 kWh/m²a
installed light performance	10W/m ²
heat output	450 kW
• fotovoltaik	65 kWp
solar thermal	38m²
technology costs	ca. 200€/m²

solar **info**

center

Solar Info Center – Freiburg, Germany

Rainwater concept

- The courtyard is full of plants. The whole rain water of the site can drain away on the planted areas.
- The draining water meets the ground and goes through pipes down under the basement where it can drain away.

solar **info**

Ecological Energy supply

District heating systems

- cogeneration unit disposal gas
- fermentation of bio waste
- rape- cogeneration plant
- wood-fired cogeneration plants

solar **info**

solar **info**

OPTIMIZE THE ENERGY MIX

- Fuel used:
- Heating oil: 43%
- Gas: 42%
- Wood: 15%
- → Reliance on heating oil: 100% in 2000, only 40% in 2006

REDUCE ENVIRONMENTAL IMPACTS

- In 2000, Installation of continuous emission measurement and analysis equipment
- · Renewable energy as a percentage of the total energy consumed: 15%
- · Emissions avoided:
- -6,880 metric tons of CO2 in 2002; 19,700 metric tons of CO2 in 2006
- 30% less dust particles compared with 2002
- 44% less sulfur dioxide compared with 2002

AWARENESS OF REDUCED CONSUMPTION

 Brochure with information to improve awareness of sustainable development and energy management

Heating network
Heating and domestic hot water
40 kilometers

Heat: 115,740 MWh Hot water: 286,122 m³

solar **info**

solar **info**

tight transfer station

solar **info**

transfer station (basement)

solar **info**

center

insulated tubes

Heat plant, University hospital, Freiburg

- Substitution of a dieselengine emergency power generator by a gasengine-cogeneration unit (CHP)
- integration of unit in the steam generation process
- Combinated process: engine waste heat and exhaust gas heat (500 °C) used for preheating of boiler feed water
- Stand-alone system in case of a power supply system breakdown

Capacity of the CHP

electricity: 1552 kW

heat: 808 kW from engine waste heat

869 kW from exhaust gas heat

CHP of the month

Cogeneration unit (CHP) of the month, February 2007

Quelle: E&M Magazine, 15. February 2006

center

CO₂ – reduction [g/kWh]

Return of investment: 2.6 years!

Quelle: E&M Magazine, 15. February 2006

solar heating – saisonal storage

solar **info**

center

Das Energieautarke Solarhaus. Südansicht.

(Quelle: Koslik)

solar house in Freiburg

solar **info**

center

Source: Fraunhofer ISE, Freiburg

www.ened.com

solar **info**

center

Total energy requirement

for the production, use and maintenance during a period of 80 years

solar **info**

Thank you very much for your attention!

