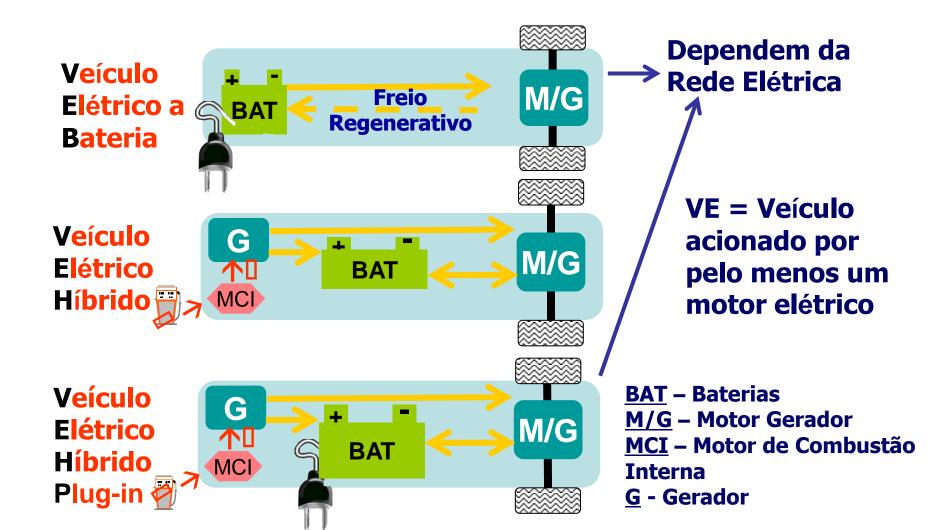


Veículos Elétricos Prefeitura de São Paulo

24 de setembro de 2009 Pietro Erber


SUMÁRIO

- •O que é um VE
- Porque usar VE
- Efeito dos VE no mercado de energia
- Competitividade com a gasolina
- Benefícios ambientais

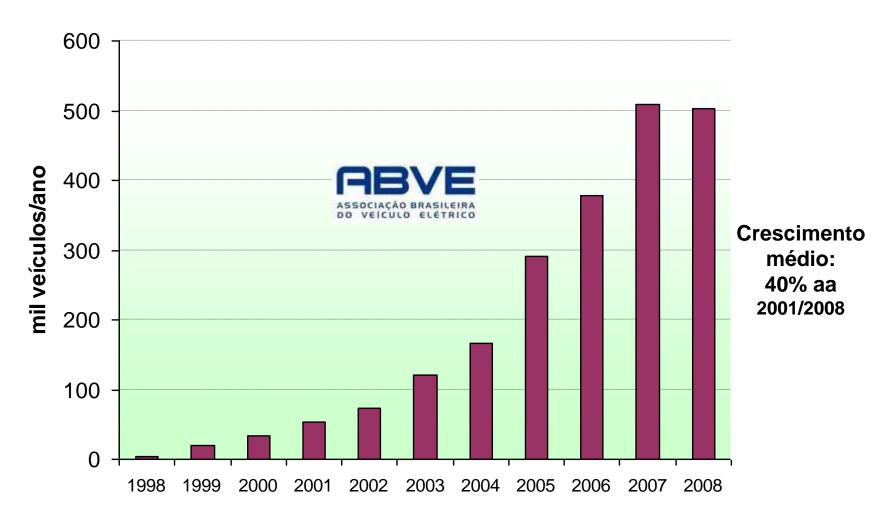
Veículo Elétrico - tipos

BEN 2007 Origens & Uso Final da Energia tep

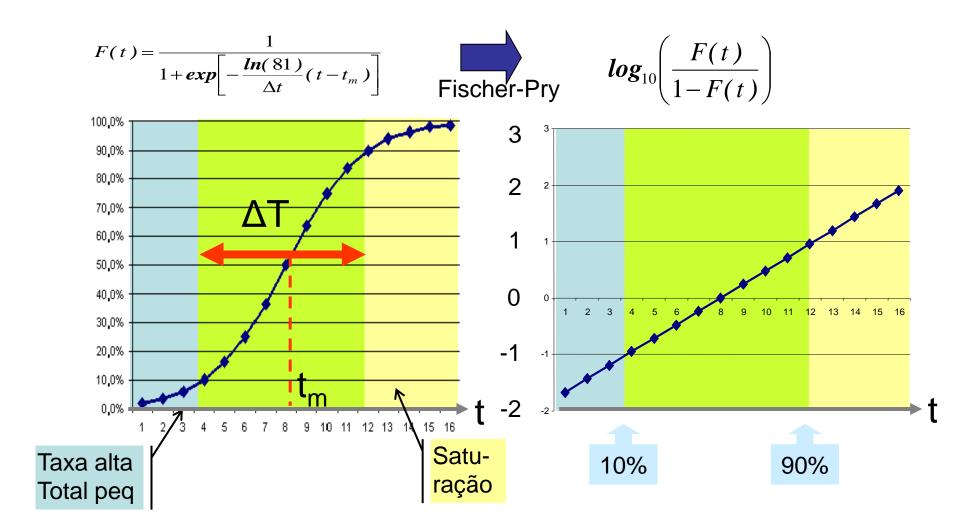
	Fósseis	Biomassa	EnElétric	TOTAL	Total %
Transportes	49	9	-	58	27
Indústria	32	33	17	82	38
Residencial	6	9	8	23	11
Serv.& Agrop.	8	2	8	18	8
Setor Energia	9	11	1	21	10
Uso Não Energ.	14	-	0	14	6
TOTAL	118	64	34	216	100
Total %	54	30	16	100	

Porque motor elétrico

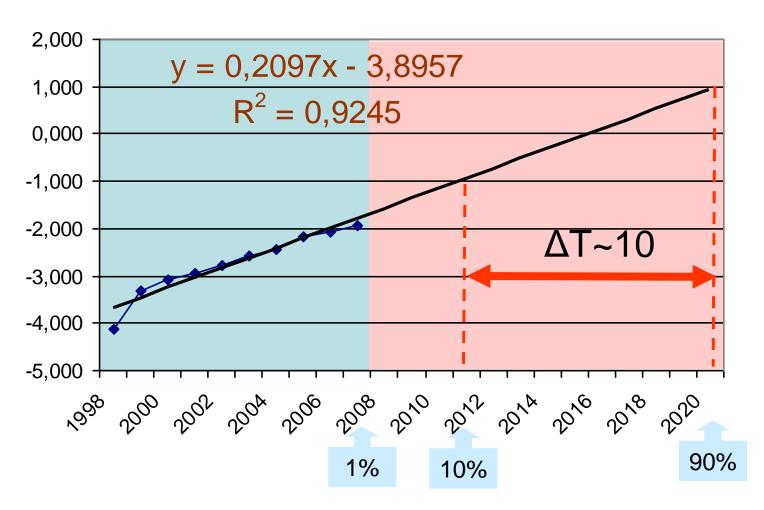
- -Muito eficiente (80 a 96%)
- -Emissão nula
- -Alto torque com velocidade baixa, inclusive nula
- -Flexível em termos de porte e formato
- -Capacidade de fornecer picos de torque e potência
- -Facilidade para funcionar como motor ou gerador
- -Vida útil bastante longa


Porque energia elétrica

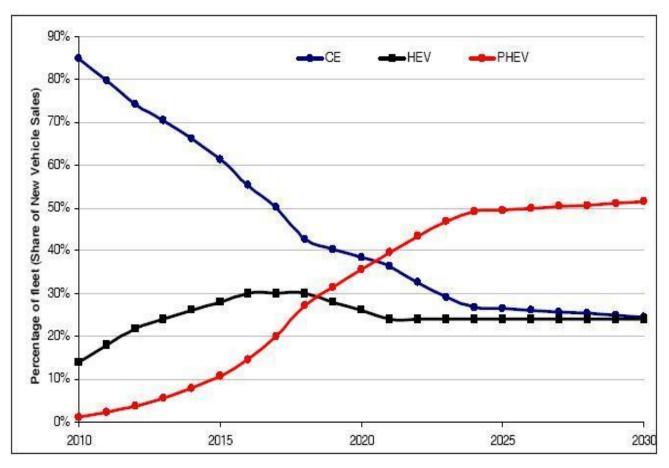
- -Pode ser gerada de várias formas e de várias fontes / combustíveis
- -Geração externa ou embarcada no veículo.



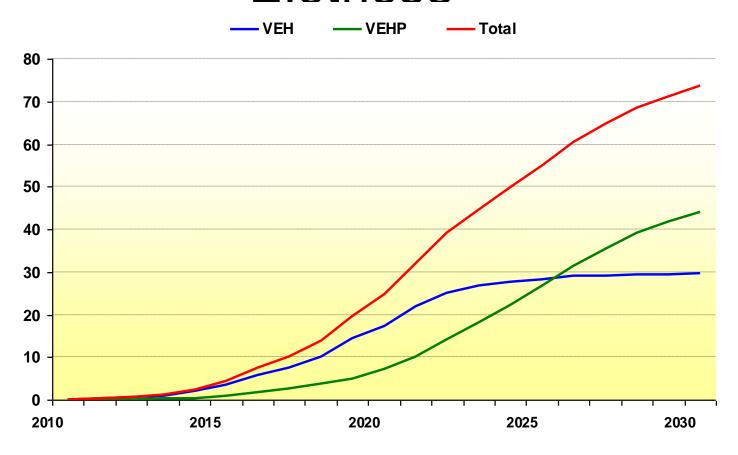
Vendas de VEH no mundo



Penetração do mercado logística


VEH mundo – penetr. de mercado

Participação dos VEs nas Vendas Estados Unidos



Fonte: Evaluation of the Impact of Plug-in Electric Vehicle..., J. Taylor , A. Maitra..., EPRI

Brasil "Market Share" dos Carros Elétricos

Participação dos VEs nas Vendas de Automóveis

- VEB serão 10% das vendas em 2020
 Carlos Ghosn
- VE serão 33% das vendas em 2025
 IDTechEx (Cambridge, GB)

Vendas de Automóveis Taxas de Crescimento

Período	%
2000 - 2008	9,6
2008 – 2010	3,2
2010 - 2015	5,2
2015 - 2020	3,6
2020 - 2025	3,1
2025 - 2030	2,7

Frota de Automóveis Vendas Anuais

milhões Totais – **ANO** VEH VEHP/B **Total** 2,4 **2010** 3,1 0,12 0,09 2015 0,03 2020 3,7 0,90 0,65 0,27 4,3 2025 2,36 1,22 1,15 2030 4,9 3,61 1,45 2,16

Consumo dos VEHP/B

ANO	Frota VEHP	Consumo Individu al	Consumo	Mercado Brasil	Participa"‹o VEHP/B
	milh > es	MWh/ano	TWh	TWh	%
2010	-	-	-	440	-
2015	0,03	2,0	0,1	540	-
2020	0,77	2,5	1,9	660	0,3
2025	4,29	3,0	12,9	820	1,6
2030	12,33	3,5	43,2	1000	4,3

Redução do Consumo de Combustíveis

- Número de VEHP/B-29,25 hilhões
- Número de VEH: 6,6 milhões
- Redução VEHP/B: 3,8 milhões tep
- Redução VEH: 1,7 milhões tep
- Redução total VE: 5,5 milhões tep ~ 16%

VEB e Consumo de Energia 15 mil km/ano

Elétrico

Gasolina

5 km/kWh

13 km/l

3 MWh/ano

1155 I/ano

0,26 tep/ano

0,83 tep/ano

VEB e Gasolina Custos de Energia

Elétrico

Gasolina

3 MWh/ano

1155 I/ano

R\$ 470 /MWh

R\$ 2,70/I

R\$ 1400/ano

R\$ 3100/ano

Automóveis convencionais e	km/l ga	asolina ³	Custo ⁴	Diferença
elétricos híbridos	Cidade Estrada		(US\$)	
Corolla 09 (convencional)	11,1	15,3	17.150	
Prius 08 (elétrico híbrido)	20,4	19,1	21.100	+23%
Camry 09 (convencional)	8,9	13,2	18.720	
Camry (elétrico híbrido)	14,0	14,5	25.350	+35,4%
Honda Civic 08 (convencional)	10,6	15,3	15.010	
Honda Civic 08 (elétrico híbrido)	17,0	19,1	22.600	+50,6%
Nissan Altima (convencional)	9,8	13,2	20.180	
Nissan Altima (elétrico híbrido)	14,9	14,0	25.170	+24,7%

Fontes: websites http://www.toyota.com, http://automobiles.honda.com e http://www.nissanusa.com

V. Elétrico x V. a Gasolina

- Custo anual da energia
 - energia elétrica: R\$ 1400
 - gasolina: R\$ 3100
- Valor atual da diferença, a 15% a.a., em 5 anos:
 - 15 mil km: R\$ 5,4 mil
 - 45 mil km: R\$ 16,1 mil
- Preço do carro a gasolina: R\$ 40 mil

Diferença competitiva

15 mil km: 14%

45 mil km: 40%

Baterias

Tecnologia	Energia específica Wh/kg	Potência específica W/kg	# ciclos	Custo US\$/kWh
Chumbo-ácida				
VRLA*	35-45	250	400-500	160-210
NiMH	70	350	1.350-1.550	780-930
NiNaCl ₂	90-125	150-200	1.000-3.000	300-700
Íon de lítio	150-200	400	1.000-3.500	900-1.200
Lítio-polímero	150	300	-	-
Nano-lítio-titanato	80-100	1.250	25.000	2.000
Lítio-enxofre	500	-	-	-
Lítio-ar	5.000	-	-	-

^{*}VRLA: Vlave Regulated Lead-Acid

Exemplo: Automóvel a bateria com 300 km de autonomia

Desempenho de 6 km/kWh → bateria com 50 kWh (300/6)

Bateria de íon de lítio: >250 kg (50kWh/200Wh por kg) - US\$ 45.000!

VE: benefícios

- Menor uso de combustíveis fósseis
- Ambientais: locais, GEE, ruído
- Carga interruptível
- Serviços ancilares

Emissões de CO₂ kg/mcal

Diesel: 315

Gasolina: 302

Gás Natural: 210

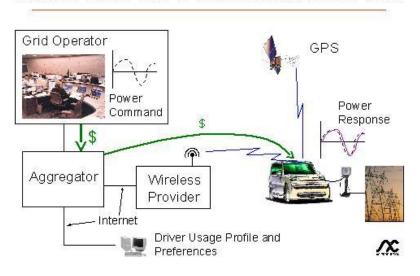
Óleo: 296

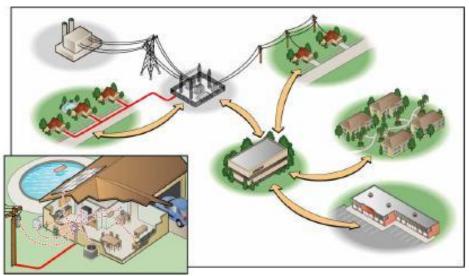
Carvão: 375

Eficiências da Fonte às Rodas e Emissões de CO₂

Cadeias	η%	kg.CO ₂ /Mcal
Carvão – Usina – VE	19	1974
Gás Nat. – Usina – VE	33	636
Gás Nat Posto - VC	11	1910
Petróleo – Gasolina – VC	12	2525
Petróleo –Diesel – VC	13	2423
Etanol - Posto - VC	12	291

Requisitos para a Difusão dos VE


- Percepção da necessidade
 ambiental: sociedade e governo
- Regulamentação e penalização de emissões e emissores: governo
- Redução dos custos de aquisição (tecnologia, incentivos fiscais temporários, escala de produção): governo, universidade e indústria
- Facilidade de recarda: distribuidoras



V2G / Redes Inteligentes

Connected vehicles serve as distributed energy resource (DER)

OBRIGADO!

